Gene Regulatory Network Inference Using Prominent Swarm Intelligence Methods
نویسندگان
چکیده
Genes are the basic blue print of life in an organism containing the physiological and behavioral characteristics. A gene regulatory network (GRN) is a set of genes, or parts of genes, that interact with each other to control a specific cell function. GRN inference is the reverse engineering approach to predict the biological network from the gene expression data. Biochemical system theory based S-System is a popular model in GRN inference and the model is defined with its different parameters. The task of S-System based GRN inference is its parameter estimation which is an optimization problem. Several studies employed Particle Swarm Optimization (PSO) and other pioneer optimization techniques to estimate S-System model. In this paper several prominent swarm intelligence (SI) techniques have been studied and adapted for S-System parameter estimation. They are Group Search Optimizer, Grey Wolf Optimizer and PSO. Proficiency of optimization techniques are compared to infer GRN from SOS DNA real gene expression data and DREAM 4 Silico data.
منابع مشابه
Title Transcription factor activity estimation based on particle swarm optimization and fast network component analysis
Transcription factors (TFs) play an important role in regulating the expression of genes. The accurate measurement of transcription factor activities (TFAs) depends on a series of experimental technologies of molecular biology and is intractable in most practical situations. Some signal processing methods for blind source separation have been applied in the prediction of TFAs from gene expressi...
متن کاملModule_based Analysis of Biological Data for Network Inference and Biomarker Discovery
Systems biology comprises the global, integrated analysis of large-scale data encoding different levels of biological information with the aim to obtain global insight into the cellular networks. Several studies have unveiled the modular and hierarchical organization inherent in these networks. In this dissertation, we propose and develop innovative systems approaches to integrate multi-source ...
متن کاملPSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent
In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...
متن کاملInference of Differential Equation Models by Multi Expression Programming for Gene Regulatory Networks
This paper presents an evolutionary method for identifying the gene regulatory network from the observed time series data of gene expression using a system of ordinary differential equations (ODEs) as a model of network. The structure of ODE is inferred by the Multi Expression Programming (MEP) and theODE’s parameters are optimized by using particle swarm optimization (PSO). The proposed method...
متن کاملAbductive inference in Bayesian networks using distributed overlapping swarm intelligence
In this paper we propose several approximation algorithms for the problems of full and partial abductive inference in Bayesian belief networks. Full abductive inference is the problem of finding the k most probable state assignments to all non-evidence variables in the network while partial abductive inference is the problem of finding the k most probable state assignments for a subset of the n...
متن کامل